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Simple modi®cations to the Sayre squaring method determine a class of

functional atomic form constraints representing the likelihood that a particular

atomic form occupies a localized volume of the unit cell. The functional

formulation, as opposed to the traditional structure-factor equation formula-

tion, facilitates modeling multiple atom types and integrating atomic form

information into established density-modi®cation routines. Two complementary

methods of phase re®nement are considered. The ®rst method constructs an

atomic resolution probabilistic ®lter from the atomic form functions. The

probabilistic ®lter is used to modify density throughout the unit cell, in both the

solvent and macromolecular regions of the unit cell. The second method exploits

the automated map interpretation aspects of the atomic form functions. A

simple iterative phase-re®nement procedure alternating the two methods

successively is applied to three small metalloproteins, with signi®cant phase

improvements beyond that obtained with conventional density modi®cation or

re®nement in accordance with reciprocal-space squaring equations.

1. Introduction

It is widely recognized that, in the absence of non-crystal-

lographic symmetry, solvent-¯attening techniques (Wang,

1985; Abrahams & Leslie, 1996; Xiang et al., 1993) provide one

of the most effective physical constraints on the electron

density for use in phase determination for macromolecular

structures. Solvent-¯attening methods are based on the

observation that the unit cell of a macromolecular crystal can

be divided into distinct macromolecular and solvent regions.

In physical terms, the electron density of the solvent region

should be largely diffuse and areas of signi®cant density can be

assumed to be in error. Therefore, choosing phases that

dampen electron-density ¯uctuations in the solvent region as

much as possible leads to a better phase set.

Solvent-¯attening techniques, however, can only modify

density in the solvent region to determine and re®ne phases.

To make more effective use of density constraints throughout

the entire unit cell, solvent-¯attening techniques have been

generalized to analyze the shape of the frequency histogram

produced by the electron density (Zhang & Main, 1990;

Terwilliger, 2000). So-called `histogram-matching' methods

(Lunin, 1993; Zhang, 1993) constrain the density histogram to

deviate minimally from an ideal density histogram. The elec-

tron-density histogram does not, however, represent fully all

of the structural information present in the macromolecular

region of the unit cell. Additional information can be captured

by multi-dimensional histogram-matching methods which

assess local quantities of the electron density, such as local

mean, local variance, gradient and Laplacian (Xiang & Carter,

1996; Nieh & Zhang, 1999; Refaat et al., 1996). These multi-

dimensional histograms encode valuable structural informa-

tion; however, it is available only indirectly.

Direct structural information is available, given atomic

resolution, from the atomic forms. Atomic form constraints,

such as the Sayre squaring method equations (Sayre, 1952),

and generalizations thereof due to Woolfson (1958), Von Eller

(1973) and Rothbauer (2000), were among the ®rst methods

exploited in the structure determination of small molecules.

These constraints traditionally take the form of convolutional

structure-factor equations for which a least-squares solution

can in principle be determined. Consider, as an example, the

Sayre squaring method equations for each re¯ection h:

ahFh �
P

k

FkFhÿk;

where ah is determined from the single modeled atom form.

The least-squares solution, in this case, corresponds to a set of

phases for which the quantity

D �P
h

���ahFh ÿ
P

k

FkFhÿk

���2
is minimized (Sayre, 1972, 1974; Debaerdemaeker et al., 1988;

Refaat et al., 1995). By Parseval's theorem, the quantity being

minimized, D, is equal to an integral over the entire unit cell.

Since the atom-form constraints are true only approximately,

some parts of the unit cell are more accurately re¯ected in the

structure-factor constraints than others and the mean devia-

tion throughout the unit cell is not necessarily meaningful.

Consequently, minimizing what is, in effect, an average value

throughout the unit cell is not extremely effective. In fact, it
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has been shown that the correct structure need not have the

lowest D value among all possible structures (Roach et al.,

2001). Furthermore, the convolutional nature of the

constraints hinders any attempt to determine meaningful

weights constraining the contribution to D of individual

phases. Nonetheless, the atomic form constraints do possess

valuable structure-determining information; unfortunately,

this information is presented in a form that makes it dif®cult to

access through least-squares re®nement. We show here that in

order to exploit atomic shape information more ef®ciently for

phase re®nement, the atomic form constraints must take a

somewhat different formulation.

Functions are developed that express the likelihood that a

localized volume of the unit cell corresponds to an atom of a

prescribed form. Owing to the localization, these likelihood

functions are not subject to an equal-atom condition, but can

correspond to each different atom type known to occur in the

structure. Taken together, they determine an atomic resolu-

tion probabilistic ®lter of the structure. This probabilistic ®lter

forms the basis of an iterative phase-re®nement algorithm

combining both solvent and model-independent macro-

molecular density-modi®cation methods with iterative model

building.

2. Local squaring functions

For a given atomic form %0, consider the function f(x) deter-

mined by the product of the electron density % and this atomic

form centered at y within the unit cell:

f �x� � %�x�%0�xÿ y�:
If the electron density contains an atom of type %0 located at y,

the function f will approximate the squared atomic form

centered on the point y:

%2
0�xÿ y�;

otherwise f will take some other form. Note that the quality of

this approximation will depend on both the resolution of the

map and, importantly, on the error in the phases used to

construct it. Assuming suf®cient resolution, the likelihood that

a given point in the unit cell is the center of an atom of type %0

will be measured by the similarity between f and the squared

atom form. To express similarity in terms of the least-squares

difference between these functions, the local squaring function

is de®ned as

O�y� � R
V

j%�x�%0�xÿ y� ÿ %2
0�xÿ y�j2 dx3: �1�

Note that O(y) will be close to zero at points of the unit cell

that are most likely to be the centers of atoms of the form %0.

For simplicity, assume that % takes only real values and that

%0 is centrosymmetric. The structure factors of this function,

Oh, are easily determined from the expansion

O�y� � R
V

�%2�x�%2
0�xÿ y� ÿ 2%�x�%3

0�xÿ y� � %4
0�xÿ y�� dx3:

Thus, letting f
�n�

h denote the scattering factor of the atom form

%n
0 and |V| denote the volume of the unit cell,

Oh � �f �2�h =jVj�P
k

FkFhÿk ÿ 2Fhf
�3�

h � ��h�
R
V

%4
0�x� dx3;

where � is the Kronecker delta, taking the value 1 for h = 0 and

0 otherwise. Therefore, the local squaring functions for a

particular atom type can be calculated ef®ciently by reducing

the convolution to fast Fourier transforms.

3. Phase refinement

Electron-density maps constructed from experimentally

determined phases are seldom optimal for interpretation and

model building. The quality of the structural information to be

obtained depends on the degree to which the experimental

phases can be adjusted to improve the electron-density map

they determine. Typically, the phases are adjusted in order to

satisfy more closely some general principle, such as the

distinction between macromolecule and solvent regions of the

unit cell. We consider two complementary methods, A and B,

of utilizing the atomic form information inherent in the local

squaring functions for phase re®nement.

Method A is closely related to solvent ¯attening. Solvent-

¯attening techniques determine phases that minimize density

¯uctuation in the solvent region. The local squaring functions

have the property of taking values close to zero in the regions

of the unit cell that are likely to contain an atom of a particular

form. Thus they provide an objective function analogous to

solvent ¯atness for the electron density within the molecular

envelope. Therefore, combining several properly scaled local

squaring functions corresponding to different atom types will

produce an atomic resolution probability map that can

improve density within the molecular envelope.

Given a set of suitable atomic forms, f%ig, 1 � i � N,

consider the local squaring functions de®ned by each atomic

form: {Oi}, 1 � i� N. De®ne a probability function on the unit

cell as follows:

Pi�x� � expfÿ�i�Oi�x� � �i�g; x 2 V;

where �i and �i are constants, speci®c to each atom type,

normalizing the scale of the local squaring function. Note that

�i are necessary to ensure that Pi(x) is greater than or equal to

zero and less than or equal to one. Theoretically, this is

guaranteed by (1); however, in practice ®nite resolution will

cause these functions to take some negative values. Once the

probability functions have been determined, they can be

combined recursively into a single probability function

expressing the probability that an atom of any of the given

forms occupies a particular volume within the unit cell.

Let P 0i �x� denote the probability determined by the local

squaring functions corresponding to the ®rst i atom types. That

is, the probability that a particular region corresponds to an

atom of the ®rst type or an atom of the second type, and so

forth. Thus,

P 01�x� � P1�x�
and each additional atom type is introduced recursively as

P 0i�1 � P 0i �x� � Pi�1�x� ÿ P 0i �x�Pi�1�x�:



Note that the product is necessary because the probabilities

corresponding to different atom types are not necessarily

disjoint. We do, however, assume that they are independent.

The resulting function, P 0N�x�, or more simply P(x), combines

the information from the local squaring functions for different

atom types into an atomic resolution probabilistic ®lter.

Consider next the product %(x)P(x). Since P(x) takes values

near 1 in regions that are likely to contain atoms of a particular

form, these regions are mostly preserved in %(x)P(x).

However, in regions where P(x) takes values near 0, i.e.

regions unlikely to contain atoms of the prescribed form, the

density of %(x)P(x) will be dampened. This observation is the

basis for the method A phase-re®nement scheme.

Let %�n� and P �n� denote the electron-density map and

probability map obtained after n iterations, respectively. A

new set of phases is determined from the average of the

current map %�n� and the product P �n�%�n�, i.e.

%�n�1� � �%�n� � P �n�%�n��=2:

The probabilistic ®lter can also bene®t from the iterative

construction. For example,

P �n��x� � P�x� � ��x�P �nÿ1��x�;
where �(x) introduces information from previous steps and,

potentially, other independent sources. In particular, tradi-

tional density-modi®cation methods or map quality estimates

from experimental sources could be included.

The current implementation of method A determines the

scaling constants � and � from the initial data and the value

of � remains constant throughout the calculation. The fast

Fourier transform routines are taken from the Digital

Extended Math Library for Digital UNIX Signal Processing

subcomponent (Digital Equipment Corporation, 1999). A

sampling grid that is approximately twice as ®ne as the

Shannon±Nyquist requirement is used.

The local squaring functions represent an implicit inter-

pretation of the electron density in terms of atoms of a

particular type and their likely coordinates. Method B exploits

these map-interpretation properties. For a given atomic form,

the negative of the local squaring function will have distinct

peaks corresponding to the locations of atoms of the given

form. Therefore, a list of atomic locations for each atomic

form is generated by examining the corresponding local

squaring function. This list of atomic coordinates is then used

to construct a new electron density, %̂1. A second application

of this method applied to % ÿ %̂1 will often lead to additional

atomic peaks that were not present in %̂1. Let the electron

density generated by the second set of peaks be denoted %̂2.

The list of peaks determined by both passes of the method can

be used for model speci®cation or used in an iterative aver-

aging scheme. Let %̂ denote the electron density determined

by both sets of peaks, then

%�n�1� � �%�n� � %̂�=2

determines the map from which a new set of phases is derived.

The current implementation of method B makes use of the

routine peakmax taken from the CCP4 suite (Collaborative

Computational Project, Number 4, 1994). The input map for

this routine is sampled on a grid that is approximately ®ve

times the Shannon±Nyquist requirement.

We envision that the appropriate use of these methods will

be in the context of components in larger more established

structure-determination systems. The important advantage

that the local squaring functions provide over traditional

structure-factor equations and conventional density modi®-

cation is the ability to model multiple different atomic forms

within the molecular envelope in a formulation resembling

common density-modi®cation techniques, such as solvent

¯attening. This formulation allows atomic form constraints to

make more substantial contributions to systems consisting of

multiple constraints. For example, in ACORN (Foadi et al.,

2000), where atomic form information is evaluated in the

context of Sayre's equations, the local squaring functions

could provide a more effective complement to dynamic

density modi®cation. Furthermore, the probabilistic ®lter

derived from the local squaring functions represents an

implicit natural foundation for automated map interpretation.

In a system such as wARP (Perrakis et al., 1997), where a

probable atomic model is constructed in increments, the

probabilistic ®lter provides an alternative to coordinate

re®nement and an excellent basis for introducing new

elements of the model.

4. Examples

To demonstrate the effectiveness of methods A and B in this

communication, consider an algorithm, resembling Shake-

and-Bake (Weeks et al., 1994) or SHELXD (Sheldrick &

Gould, 1995), where methods A and B are applied succes-

sively. We applied this algorithm to three small metallopro-

teins: wild-type rubredoxin, Zn-substituted rubredoxin and

high-potential iron protein. In each of the rubredoxin exam-

ples, local squaring functions corresponding to three atom

types are used: an average C, N, O type; an S type; and a metal

type (Fe or Zn). For the high-potential iron protein, a fourth

atom type corresponding to solvent O proved bene®cial.

4.1. Wild-type rubredoxin

Rubredoxin is a small non-heme iron protein, the structure

of which has been studied in great detail. Intensities and

experimentally derived phases for this particular specimen

were measured by Dauter et al. (1996) to 1.1 AÊ . The experi-

mental phases were then processed by dm (Cowtan, 1994) and

used to construct an initial set of structure factors to 1.2 AÊ .

The results of applying method A and method B succes-

sively are given in Table 1. Note that although a second

application of method B can indeed lead to a slight

improvement in the map correlation coef®cient, the mean

phase error in all resolution bands does not improve. None-

theless, we obtain an overall improvement of more than 23� in

mean phase error with an improvement of more than 30� for

the highest resolution band, and nearly 0.2 in map correlation
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coef®cient. Fig. 1 gives a representative sample of the re®ned

electron-density map.

4.2. Zn-substituted rubredoxin

The wild-type rubredoxin active site consists of a single Fe

atom coordinated tetragonally to four cysteinyl S atoms. This

binding motif is similar to the metal core found in the Zn-

®nger family. In order to study this ZnS4 unit, Dauter et al.

(1996) constructed as a structural model a Zn-substituted

rubredoxin. A set of structure factors for this protein at 1.2 AÊ

resolution were again derived from dm-processed experi-

mental phases.

The initial phase set for the Zn-substituted rubredoxin is

signi®cantly better than that of the wild type. The better initial

phases lead to an improvement of nearly 40� in the mean

phase error of the highest-resolution band, an improvement in

overall mean phase error of more than 30� and an improve-

ment of map correlation by 0.2. The mean phase error for each

resolution band and map correlation coef®cients are given in

Table 2. Fig. 2 shows the re®ned electron density around the

metal cluster.

4.3. High-potential iron protein

Another Fe±S cluster of considerable biological interest is

[Fe4S4]. Carter et al. (1972) determined the intricate inter-

penetrating tetrahedral structure of this cluster in the high-

potential iron protein at 2.0 AÊ resolution. The 0.93 AÊ structure

of an H42Q mutant of this protein has been shown by Parisini

et al. (1999) to be essentially isostructural. To test the local-

squaring-function-based methods on phases exhibiting some

model bias, the following system of structure factors was

constructed. A 2.0 AÊ phase set was calculated from the wild-

type oxidized structure by superimposing its four Fe atoms on

the four Fe atoms of the mutant. Sharpening the structure

factors obtained from these phases and the experimental

intensities for the mutant deposited in the Protein Data Bank,

we generated a 1.0 AÊ set of structure factors by the phase-

extrapolation procedure discussed by Roach et al. (2001).

This example differs from the previous two in that the

errors in the initial phase set are systematic as opposed to

random. For the purpose of comparison, we consider a map

Table 1
Phase error and map correlation with respect to wild-type rubredoxin
coordinates.

The mean phase error for each resolution ring is given in degrees for each
sequence of methods.

Resolution Initial A AB ABA ABAB ABABA

>2.0 AÊ 49.342 49.385 49.153 41.901 41.994 41.510
2.0±1.8 AÊ 54.134 53.006 52.231 36.628 37.868 36.436
1.8±1.6 AÊ 57.941 53.505 52.331 35.109 36.266 34.216
1.6±1.4 AÊ 65.532 56.959 56.282 37.829 38.357 36.723
1.4±1.2 AÊ 70.677 58.587 57.915 40.828 40.868 39.630
>1.2 AÊ 62.044 55.164 54.515 39.377 39.767 38.493
Map R 0.584 0.648 0.665 0.770 0.774 0.777

Figure 1
Representative electron-density maps for wild-type rubredoxin. Each
map is contoured at 1.2 standard deviations from its mean. (a) The initial
electron density. (b) The re®ned map. (c) The model-calculated electron
density.

Table 2
Phase error and map correlation with respect to zinc rubredoxin
coordinates.

The mean phase error for each resolution ring is given in degrees for each
sequence of methods

Resolution Initial A AB ABA ABAB ABABA

>2.0 AÊ 42.873 40.038 37.138 31.573 32.227 31.479
2.0±1.8 AÊ 49.489 44.268 40.105 26.195 28.290 26.221
1.8±1.6 AÊ 56.520 46.814 40.990 24.459 26.774 24.489
1.6±1.4 AÊ 64.244 51.843 46.153 28.173 29.688 27.757
1.4±1.2 AÊ 70.767 59.185 54.579 33.600 33.879 32.612
>1.2 AÊ 59.893 50.615 46.034 30.229 31.261 29.772
Map R 0.676 0.782 0.813 0.873 0.874 0.876



constructed from the experimental amplitudes with phases

calculated from the lower resolution model. The mean phase

error and map correlation coef®cients are given in Table 3.

Note particularly that the phase errors have improved by

more than 15� from the initial extrapolated phases. In the

highest resolution band, the mean phase error is nearly 30�

better than those based on the wild-type model. Fig. 3 displays

the electron density around the mutation. Although the

glutamine 42 side-chain density in the re®ned map is incom-

plete for the N
 , the entire, incorrect, wild-type histidine

residue structure is intact in the comparison map.
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Figure 2
Electron density surrounding the metal cluster of Zn-substituted
rubredoxin. Each map is contoured at 1.2 standard deviations from its
mean. (a) The initial electron density. (b) The re®ned map. (c) The model-
calculated electron density.

Table 3
Phase error and map correlation with respect to H42Q mutant high-
potential iron protein coordinates.

The mean phase error for each resolution ring is given in degrees for each
sequence of methods. The phase set denoted `Compare' consists of phases
calculated from the wild-type model to 10 AÊ .

Resolution Initial A AB ABA Compare

>2.0 AÊ 48.131 40.776 40.933 40.465 48.131
2.0±1.75 AÊ 60.472 34.306 33.134 33.207 53.615
1.75±1.5 AÊ 47.747 33.899 33.143 33.048 54.757
1.5±1.25 AÊ 50.095 32.619 32.232 31.604 61.519
1.25±1.0 AÊ 49.705 32.332 29.743 29.787 64.764
>1.0 AÊ 49.929 33.875 32.438 32.253 60.087
Map R 0.741 0.831 0.839 0.837 0.729

Figure 3
Electron density corresponding to H42Q mutation in high-potential iron
protein. Each map is contoured at 1.2 standard deviations from its mean.
(a) The electron density constructed from experimental amplitudes and
phases of wild type. (b) The re®ned electron-density map. (c) The
coordinate-re®ned electron density.
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5. Conclusions

Although the development of the local squaring functions is

still in its infancy, a number of promising aspects of the

functions have been illustrated. Notably, the local squaring

functions encapsulate atomic form constraints in a form

suitable for phase re®nement, either alone or in conjunction

with more established methods. In particular, the local

squaring functions appear to be high-resolution complements

to methods such as solvent ¯attening and histogram matching,

which are more effective at lower resolution. The examples in

Tables 1, 2 and 3 suggest that mean phase-error improvements

of up to 40� beyond that achieved with dm are possible for

high-resolution re¯ections. Also notable, in view of our

previous inability to re®ne low-resolution phases using the

convolutional structure-factor equations of Sayre and

Woolfson (Roach et al., 2001), is that the phases to 2.0 AÊ

improved by around 10� in each of the three examples.

Moreover, the phase-re®nement methods derived from the

local squaring functions incorporate multiple atom types more

easily than the methods of Woolfson (1958), Von Eller (1973)

and Rothbauer (2000).

Local squaring function phase re®nement remains far from

optimized. Certain methodological improvements are imme-

diately suggested. For example, in method A, allowing the

function P to take negative values would in effect simulate a

solvent ¯ipping technique (Abrahams & Leslie, 1996); method

B could be adapted to place entire subunits, such as amino

acids rather than simply single atoms; and both methods

would bene®t by replacing the simple averaging scheme with a

more sophisticated procedure exploiting Sim weights (Sim,

1960) to represent estimated phase errors. Other questions,

particularly involving scaling and resolution dependence,

await satisfactory investigation. Nevertheless, the promise

embodied in the preliminary results suggests that such inves-

tigations would be worthwhile.

As the phase-re®nement aspects of the local squaring

functions have been only touched upon, other properties, such

as the map interpretation aspects, remain completely unex-

plored. Method B exploited these properties for the purpose

of phase re®nement; however, more far-reaching applications

are not unreasonable. In particular, there is an emerging

realization that phase determination, model building and

coordinate re®nement are, and ought to be considered to be,

more closely linked than was previously recognized (Lamzin et

al., 2000). It would be extremely interesting to develop

statistical foundations suf®cient to support local-squaring-

function-based hypothesis testing applied to automated model

construction.

We would like to thank Z. Dauter for providing experi-

mental intensities and phases for both rubredoxin proteins

studied in this communication.
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